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ABSTRACT 

The discovery of general patterns of behavior from a set of 
input/output examples can be a useful technique in the automated analysis 
and synthesis of software systems. These generalized descriptions of the 
behavior form a set of assertions which can be used for validation, pro- 
gram synthesis, program testing and run-time monitoring. Describing the 
behavior is characterized as a learning process in which the set of inputs is 
mapped into an appropriate transform space such that general patterns can 
be easily characterized. The learning algorithm must choose a transform 
function and define a subset of the transform space which is related to 
equivalence classes of behavior in the original domain. An algorithm for 
analyzing the behavior of abstract data types is presented and several 
examples are given. The use of the analysis for purposes of program syn- 
thesis is also discussed. 
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1. Introduction 

The development of reliable and cost effective software systems is one of the big- 

gest challenges facing the computer science community today. Many people feel that 

current practice, which is highly labor intensive, is inadequate to the task and that new 

approaches to software development utilizing increased automation will be required. 1*2 It 

is our feeling that machine learning can play a significant role in automated analysis and 

synthesis of software. The research described in this paper is motivated by the belief that 

people use examples of behavior to analyze and understand complex systems. The 

approach to learning from examples described in this paper is part of an overall project to 

increase the reliability of software systems through automation (section 2). 

Generalization from a set of examples is viewed as a transformation problem in 

which one attempts to find an appropriate transformation from the space of input data 
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objects into the transform space such that subsets in the transform space characterize 

general patterns of behavior (section 3). One algorithm for finding an appropriate 

transform function and classifying the transform space is also described (section 4). 

Some results applied to the data type queue are given in section 5. Section 6 discusses 

some unresolved issues and gives the relation of this work to other work in this area. 

2. Generation of the Input/Output Examples 

The learning algorithm described in this paper is an integral part of a system to 

analyze the behavior of abstract data types. Figure 1 shows the major subsystems 

involved in this system. The specification of an abstract data type is given algebraically? 

Input/Output examples are generated by symbolically executing the specifications. The 

symbolic execution is based on deductive theorem proving techniques4 The set of exam- 

ples is generalized using machine learning techniques described in this paper. These 

generalizations are proved consistent with the specifications by considering the generali- 

zations to be theorems and the specifications to be a set of axioms. These theorems typi- 

cally require inductive proofs. Thus, the machine learning subsystem can be considered 

as a means of guiding the selection of theorems which may be useful in analyzing the 

behavior of the abstract data types. 

The benefits of these theorems are: feedback to the systems analyst for validating 

the specification, generation of test cases,5 generation of assertions for run-time monitor- 

ing: guidance in program synthesis (see section 6) 

Each abstract data type is analyzed individually and is referred to as the Type Of 

Interest (TOI) during its analysis. We assume that the syntax of the TO1 is known 

before analysis. The queue data type, whose specification is given in Figure 2, will be 
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Figure 1 - Major Subsystems for Automated Ana.,sis 

used for purposes of illustration. 

The set of functions defining a data type is divided into two subsets. The generator 

functions are those functions of the specification which return a data object of the TO1 

(New4, Addq, Delete4 in  Figure 2). The remaining functions will be called the behavior 

functions because of the important role they play in defining the behavior of the data 

type3 (Isemptyq and Front4 in Figure 2). When constructing input examples, the TO1 

data objects and non-TO1 data objects are generated differently. Each TO1 data object is 
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Type Queue(1n teger) 

SYNTAX 

Newq -> Queue 
Addq(Queue,Integer) -> Queue 
Deleteq (Queue) -> Queue 
Frontq( Queue) 
Isemptyq(Queue) -> Boolean 

-> Integer u (error} 

SEMANTICS 
For all q : Queue; i : integer Let 

1) Isemptyq(Newq) = True 
2) Isemptyq(Addq(q,i)) = False 
3) Deleteq(Newq) = Newq 
4) Deleteq(Addq(q,i)) = If Isemptyq(q) then Newq 

5 )  Frontq(Newq) = error 
6)  Frontq(Addq(q,i)) = If Isemptyq(q) then i 

else Addq(Deleteq(q),i) 

else Frontq(q) 

End Queue 
Figure 2 - Specification of Queues 

described in terms of the sequence of generator functions which created that object. 

Each non-TO1 data object is represented by a variable which results from a symbolic exe- 

cution of the specification. These variables are subscripted, with the subscript denoting 

the order in which the data object was introduced. 

Figure 3 shows six data objects of type queue. This representation is chosen for the 

input for two reasons. First, each application of a function is an observable event which 

constitutes a point at which black box testing, run-time monitoring or record keeping can 

occur. Second, the string representing this sequence of function applications is a 
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Var 11,12: integer 

1) Newq 
2) Addq(Newq,Il) 
3) Addq(Addq(Newq,Il),I2) 
4) Deleteq(Addq(Addq(Newq,I1),12)) 
5 )  Addq(Newq,M 
6) Deleteq(Addq(Newq,Il)) 

Figure 3 - Representative Queue Data Objects 

complete abstract representation of the data object. This representation is complete in 

the sense that it can be used to compute the output value of the behavior functions. This 

takes advantage of the fact that algebraic specifications are executable.6 

The smallest subset of the generator functions which can generate every data object 

of the TO1 is called the constructor function subset. A data object is in canonical form 

when it is expressed as a sequence of constructor functions only. For the queue data 

type, Addq and Newq are the constructors. In figure 3, example 5 is the canonical form 

of example 4. A data object and its canonical form are required by the specification to 

behave identically. The availability of the canonical forms of the input data objects 

greatly simplifies the learning p ro~ess .~  

The behavior of a data type is determined solely by the value returned by the 

behavior  function^.^ Thus, the output value returned by a behavior function will be 

referred to as the behavior of the input data object (under the behavior function). 
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3. The Transformation Problem 

Each behavior function of the data type under analysis is considered individually. 

To simplify this discussion, the behavior function will contain only one input argument 

of the TOI. Let B represent a behavior function. Let T be the set of all data objects of 

the TO1 and let T’ be the subset used as input in the examples (see figure 4). Let P be the 

image of T under B. Choose y E P such that B(x) = y for some x E T’. Let S be the 

inverse image of y under B; that is, S = (u I B(u) = y )  and let S’ be the subset of S which 

is in T. The set S defines an equivalence class of all data objects of TO1 which behave 

identically under B .  The goal of the generalization process is to define a characteristic 

function for S. 
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, 

Define a transform function, A, on T which can be used to derive a characteristic 

function for S .  Let Q be the transform space (Le., image of T under A). Let R’ = {u I 

A(v) = u , where v E S’}. Thus R’ represents the set of values in the transform space 

which are in the image of examples which have the same behavior (under B). Let D’ be 

the inverse image of R’; that is, D’ = ( u I A(u) E R’). Then, the predicate, A(u) E R’, 

can be used as a characteristic function (call it C) for D’. 

Consider the ways in which D’ is related to S .  If D’ = S then 

FOR-ALL X (X E T => (A(X) E R’ iff B(X) = y)) 

is the proposed assertion about the behavior of the data type. In this case, C is a neces- 

sary and sufficient condition to explain behavior y .  If D’ c S then C is only a sufficient 

condition for B(X) = y. If D’ 2 S then C is only a necessary condition for B(X) = yt.  

Such weakened conditions can be useful in testing and monitoring.* If none of the above 

relationships hold, then the transform function, A, is not useful in characterizing behavior 

Y .  

The above approach may be generalized in two ways. The first generalization 

involves the image set in the transform space (R’). In some cases D’ c S because R’ has 

been generated from S’ c S ;  but, in many cases, a natural extension of R’ (call it R) will 

have as its inverse image a set D which is equal to S .  For example, if the range of A is 

the set of natural numbers and R’ = { 1..M) where M is the maximum value of the set (u I 

A(v) = u , where v E T’), then R’ can be generalized to [ l..-}. The characteristic func- 

tion, A(u) E R, for D should produce a more general description of the behavior of the 

data type. 

t c and 3 denote proper subset and proper superset respectively. 
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The second generalization attempts to handle behavior functions with an infinite 

image space, P. In this case, it is the characteristic function which is generalized. An 

example will be shown in section 5. 

Given a particular behavior function, B, and a particular behavior value, y, the gen- 

eralization process involves the following tasks: 

Find a transform function, A. These functions are derived by examining properties 

of the observable events (sequence of generator function applications) of input TO1 

data object. Adaptations of the trace functions defined by Tony Hoare in this book 

Communicating ~equenrial ~rocesses9 is one source of transform functions. 

Generate set R’ in the transform space, generalizing to R if appropriate. Define a 

characteristic function for D’ from R’. 

Determine the relationship between the subsets D’ and S. Since neither D’ nor S is 

known, the relationship is determined using D” = D’ n T’ in place of D’ and S’ in 

place of S. 

4. The Algorithm 

This section describes one of several algorithms which were investigated. This 

algorithm starts with a pre-defined set of potentially useful transformation functions 

which essentially count the number of events (of various kinds) in the TO1 input objects. 

It examines one example and at most one counterexample at a time as it attempts to con- 

verge on a characteristic function which is both necessary and sufficient over the sample 

set (Le. such that D’ = S). It fails when it exhausts the pre-defined set of transform func- 

tions. Attempts are made to discover a necessary and sufficient characteristic function 
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for every distinct output value. The algorithm then attempts to generalize each set R’. 

. 
Let ALL-TRANSFORMS be the pre-defined set of transform functions, 

CURRENT-SET be a current set of transform functions, A be a transform function, C 

and C’ be characteristic functions, B be a behavior function, E be an input value of the 

TO1 and y be its corresponding output value. Let E’ be a counterexample input value of 

TO1 and let x be a variable ranging over the set of input values of the TOI. 

F9r every distinct output value, y, in the sample set: 
Choose E such that B(E) = y. 
Set CURRENT-SET to ALL-TRANSFORMS. 

Set C to Find-a-Sufficient-Characteristic-Function for E. 

REPEAT UNTIL done 
IF there-exists a counterexample (E’) in the sample set such that B(E’) = y but 
C(E’) is false. 

Set C’ to Find-a-Sufficient-Characteristic-Function for E’. 
IF C’ is true for E then set C to C’ 
ELSE set C to C OR C’. 

ELSE done 

Where Find-a-Sufficient-Characteristic-Function for x is 
REPEAT UNTIL return 

Choose A from CURRENT-SET. 
Set R’ to the singleton set consisting of A(x). 

IF there does not exist a counterexample (E’) in the sample set such that A(E’) E 

R’ is true, but B(E’) f y 
THEN return A(x) E R’. 

Remove from CURRENT-SET all transform functions such that A(E) = A(E’). 
IF CURRENT-SET is empty, then return failure. 

8 -  
5 Results 

In this section results of applying the generalization algorithm to the queue data 

type will be presented. A set of transform functions will be chosen somewhat arbitrarily 
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at this point but section 6 discusses this choice in a little more detail. Let #D (#A) be the 

number of times that Deleteq (Addq) appears in the input. Let #A’ be #A for the canoni- 

cal form of the input. Let ALL-TRANSFORMS = (#D,#A,#A’), B = Isemptyq, y = 

True. Let the set of input examples be those in figure 3. The corresponding output 

values are all False except for example 1 and 6. Let E be example 1 and A be #D, then 

R’ = (0) and C 3 #D(x) E (0 ) .  C is not sufficient because of the counterexample E’ = 

example 2. Based on this counterexample, CURRENT-SET = (#A,#A’). Now chose A 

to be #A, then R’ = { 0) and C I #A(x) E { 01. This is a sufficient characterization of the 

behavior True. However, it is not necessary. Example 6 is a counterexample. A 

sufficient characterization which explains example 6 is C’ = #A’(x) E (0). This is also 

necessary and can replace C. Thus the algorithm converges on the following assertions: 

if #A(x) E (0) then B(x) = True 
#A’(x) E (0) iff B(x) = True (assertion 2) 

(assertion 1) 

The first assertion is only sufficient while the second is both necessary and sufficient. 

The analysis of Isemptyq is unfinished since we have not characterized the behavior 

value False. Choosing E = example 2 and A = #A’ leads to the sufficient characterization 

C E #A’ E { 1). However this is not necessary as indicated by counterexample, example 

3. Example 3 has a sufficient characterization C‘ E #A’(x) E (2) which is also not neces- 

sary. Combining C and C’ (by ORing the conditions) yields the characterization #A’(x) 

E { 1..2)$. Since 2 is the maximum value returned by any of the examples for transform 

function #A’, R’ = (1..2) can be generalized to (1..-). The following is characteristic 

function for the subset S (which are all the queues which are not empty): 

. 

L 

$ Union is the OR operator for sets and intersection is the AND operator 
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#A’(x) E ( 1 ..-) (assertion 3) 

Learning the Behuvior of Frontq. Generalizing the behavior of Frontq is compli- 

cated because there are a potentially infinite number of integers (and hence behaviors) 

returned by this function. In this case, the system must learn a characteristic function 

schema to describe the behavior. First define a new transformation function as follows: 

#D’(x) = number of Deleteq function application whose 
input argument had #A‘ > 0 

That is, #D’ only counts the number of Deleteqs which actually deleted something from 

the queue. Let I1 be the first integer added to the queue after it was created, I2 be the 

second, I,, be the n-th integer added. The algorithm generates: 

#D’(x) = 0 iff Frontq(x) = I1 
#D’(x) = 1 iff Frontq(x) = I2 

(assertion 4) 
(assertion 5) 

This can be generalized to 

#D’(x) = n-1 iff Frontq(x) = I,, (assertion 6)  

Multi-dimensional transform spaces. The analysis of Frontq can be used to illus- 

trate specialization in multi-dimensioned transform spaces. This would be necessary if, 

for instance, #D’ was riot in the repertoire of transform functions. First, however, we 

need to extend the set of transform functions defined previously. Event counting func- 

tions can be applied to subsequences of the input, where the subsequences are generated 

by dividing the input around some key event. For instance, the value returned by Frontq 

is traceable to a particular Addq event (the key event) during which the returned value 

was originally inserted. Identifying a key event allows the analysis of the data object 

both before and after that event. For the queue data type, the key event can be uniquely 
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identified by the variable inserted during the key event. Transform functions which are 

applied to the Subsequence of the input which occurred before the key event are denoted 

by a subscript of pre/In, where In is the item added at the key event. For the subsequence 

which occurred after the key event, the subscript post& is used. To illustrate on example 

In order to illustrate learning using multi-dimensional transform spaces, consider 

the analysis of the those input queues which return the value I2 under the behavior func- 

Frontq, y = 12. All single dimensional transform spaces using this set of transform func- 

tions fail to generate a necessary and sufficient characteristic function. Therefore, it is 

necessary to explore multi-dimensional transform spaces. These multi-dimensional 

spaces are formed by conjoining two or more characteristic functions. In terms of set 

operations, this is equivalent to checking membership in a set of n-tuples of the relevant 

transform functions and the corresponding transform values as shown below. Depending 

on the order in which the transform functions from the set ALL-TRANSFORMS are 

paired together to form a two dimensional transform space, the following three sufficient 

characteristic functions can be generated§: 

Assertion 7) Frontq(Q) = 12 if (#A’,#APstfi2) E {(1,0),(2,1),(3,2),... I 
Assertion 8) Frontq(Q) = 12 if (#D,s~2,#AJprefi2) E I(O,O>,(l,l>I 
Assertion 9) Frontq(Q) = I2 if (#A,#A’) E ((2,1),(3,2),(4,3),...} 

There are many simplifications and generalizations which are possible. For 

instance, the following simplifications are possible*: 

5 These are generated from a larger set of examples han those shown in figure 3. 
* These simplifications and generalizations are not currently programmed into the system but are 
based on straightforward arithmetic and algebraic knowledge. 
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Assertion 7’) Frontq(Q) = I2 iff (#A’ - #Apsaz = 1) 
Assertion 8’) Frontq(Q) = I2 iff (#Dpsaz - #AlpEhZ = 0) 
Assertion 9’) Frontq(Q) = I2 iff (#A - #A’ = 1) 

By examining further behavior results (for 13,14, etc.) and by further generalizations, the 

following hypothesis could be produced: 

Assertion 7”) Frontq(Q) = 1, iff (#A’ - #Apsan = 1) 
Assertion 8”) Frontq(Q) = I, iff (#Dpsan - #AlpTehn = 0) 
Assertion 9”) Frontq(Q) = I, iff (#A - #A’ = n-1) 

Hypothesis H10” is another way of saying that the integer I, is at the front of the queue if 

exactly every item previously in front of it has been deleted so that there is precisely one 

more item in the queue than was added after I,. That one more item is I,. Hypothesis 

H11” states that all the items in the queue when I, was added have subsequently been 

deleted. Hypothesis H12” states that if n-1 items have been deleted from the queue, then 

I, must be at the front. These different assertions are represented pictorially in figure 5. 

6. Discussion 

Generating Transform Functions. The success of the learning process depends on 

several factors, the most critical of which is the choice of useful transform functions. A 

good transform function will key in on essential features of the input while ignoring the 

irrelevant details. Many of the transform functions are derived rather naturally from the 

input, such as counting the number of occurrences of certain kinds of events. This class 

of transform functions ignores the non-TO1 arguments in the input as well as the order of 

function invocation. Identifying a key event allows the analysis of those subsequences of 

events before and after the key event. 
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Figure 5 - Conditions Under Which In is at Front of Queue 
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Another class of transform functions are those which are concerned with the order 

in which events occur. For example, what was the last event, or the last key event con- 

taining a particular generator function? As another example, the transform function 

could return the sequence of generator function applications, ignoring the non-TO1 argu- 

ments. This class of functions would be useful in analyzing multi-dimensional data 

structures such as trees and graphs. As might be expected, generalization in this 

transform space would be more difficult. 

New transform functions can be formed from existing ones by conjunction. Such a 

combination forms a higher dimensional transform space which is more specialized than 

the original transform spaces. In the algorithm implemented, these higher order 

transform spaces are explored only after all the lower order transform spaces have been 

eliminated. 

Generalizing in the Transform Space. The kind of generalizations possible in the 

transform space depends upon the nature of the transform space itself; however, many of 

the generalization rules defined in the literature10* l 1  can be applied. As described previ- 

ously in the case of lsemptyq, generalization by internal disjunction12 can combine 

several sufficient conditions into a necessary and sufficient one. Disjunction is 

sufficiency preserving?. For generalizing in multi-dimensional transform space, tech- 

niques for discovering invariant relationships in a set of quantitative data, such as avail- 

able in BACON13 may be useful. 

t Because ((A => B) & (C => B)) => ((A or C )  => B) 
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Comparison to other Learning Techniques. Learning can be viewed as the forma- 

tion of general concepts through the examination of specific examples which illustrate 

that concept. For program analysis, the concepts to be learned are the behavioral rela- 

tionships between the input and output values (under some behavior function). Cohen 

and Sarnmut14 point out that concepts are normally thought of as recognition devices, 

whereas programs are considered generators of output from given input. However asso- 

ciated with every program is its specification which is a predicate which recognizes 

whether the output is within the concept illustrated by that program$. Thus programs are 

devices for filling in the blanks (the output values) which satisfy the concept. For pro- 

gram synthesis, concept recognition must be both necessary and sufficient (as in Cohen 

and Sammut). Kodratoff and Ganascia, however, require only that the concept recog- 

nition function be sufficient. For program analysis, concept recognition functions can be 

either necessary or sufficient or both.8 

Many learning systems start with descriptions of the examples which are complete 

and maximally specific. In many cases, the descriptions are represented as a conjunction 

of predicates. These descriptions can be generalized in several ways: 

1) Dropping condition rule - one (or more) of the conjuncts are dropped from the 

description. l2 

2) Class generalization - if a classification taxonomy exists for the domain under 

analysis, then parts of the description representing more specific objects can be 

replaced by one of the classes of which that object is a member.15 

$ PROLOG programs are always written in this predicate form. 
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3) 

4) 

Folding5 - parts of a description can be replaced by a concept already 

Disjunction of concepts - a disjunction is always true in at least as many cases as the 

constituent concepts. 

l6 

For the analysis of abstract data types, the transform functions and values can be used to 

generate a description. However, because the number of transform functions can be 

infinite, the description may not be complete (at least not finite and complete)*. For this 

reason, the dropping condition and folding approaches to generalization are not used, 

since they traditionally require complete descriptions. Due to a lack of a concept taxon- 

omy, this method is also ruled out. Both internal and external disjunctionlo are used to 

generalize the assertion as described previously, but this is done only after an initial con- 

cept has been formed. 

The formation of this initial concept uses a method of generalization different from 

the four methods mentioned above. The choice of one transform function in effect gen- 

eralizes the concept to include all the input examples which are in the inverse mapping of 

the transform value of the input example under consideration. An attempt is made to dis- 

cover if this concept is too general by looking for a counterexample to the sufficient 

characteristic function. The active searching for an example which fails to satisfy the 

concept has been called expectation-based filtering. l7 If a counterexample is found then 

it is used to guide the selection of a new transform function. This helps the algorithm 

0 Folding is a term used in program transformations whereby the body of a program is replaced by 
a call to the program. This is the opposite of macro expansion. 
* An infinite number of transform functions can result is there are an infinite number of key events 
- each generating its own transform function. An infinite number of key events can result from 
data types which have a non-TO1 input argument which can take on an unbounded number of 
values. For queues, the number of integers which can be entered into the queue (and thus used to 
define key events) is potentially infinite. 
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ction or to fail more quickly tha might be ossible 

using a uninformed search. If none of the transforms function singly are sufficient, then 

the algorithm adds conditions to form multi-dimensional transform spaces. Thus the for- 

mation of a concept is a combination of a selecting conditions rule and an adding condi- 

tions rule. The Concept Learning System (CLS) used in ID3 also starts with a general- 

ized hypothesis and specializes it by adding conditions. l8 

Considering each value returned by a behavior function as a concept to be learned, 

the analysis of data types is a multi-concept learning problem. The individual concepts 

are learned separately and then merged together. Sometimes, as in learning the two con- 

cepts for Isemptyq, the concepts are merged disjunctively (see program synthesized for 

Zsemptyq later on in this paper). However, in the case that there are an infinite number of 

concepts (as there are for Frontq), the generalization takes the form of a concept 

schema?. 

To close this section, it should be pointed out for this problem the training examples 

are noise free and that the inductive theorem prover is the ultimate arbiter of the correct- 

ness of any learned concepts. 

Comparison to Program Synthesis by Examples. Although the orientation of this 

research is analysis instead of synthesis, analysis is an important component in generat- 

ing efficient implementations. The two assertions learned about the behavior function 

Zsemptyq could be easily converted into a program. Also, the assertion learned about 

Frontq can provide insight into its implementation. So it may be useful to compare this 

t As programs, a concept schema is represented as a fixed code segment and a dynamically sized 
data structure. 
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work to that on program synthesis by example. 

I -  

. 

There is an extensive body of literature in the synthesis of LISP programs by exam- 

ple.19 However the general problem area is different. Most work in the literature deals 

with pre-defined data structures (such as those given in LISP) and mes to synthesize 

functions which manipulate those data structures. The generator and behavior functions 

of the underlying data type are used as primitives in the generalization process. By con- 

trast, the programming of abstract data types requires the synthesis of its generator and 

behavior functions. 

To explore this difference some more, let’s examine how the assertions learned by 

our approach can be used to synthesize programs. In order to use the learned assertions 

about Isemptyq as a program, the transform function, #A’, must be computable. Syn- 

thesizing the implementation of #A’ is easy (in this case) by examining the input exam- 

ples for the effect that each generator function has on the value returned by #A’. Let 

N-Addq be a count of the number of occurrences of Addq in the canonical representation 

of a queue, then 

Newq: sets N-Addq to 0 (initialization) 
Addq: increments N-Addq by one. 
Deleteq: if N-Addq is not 0 decrements N-Addq by one 

Recognizing that assertions 1 and 3 form a partition of the transform space of #A’, it 

would be easy to generate the following program for Isempfyq: 

IF N-Addq = 0 THEN True 

ELSE False 

The interesting result is that the code for implementing Zsemtpyq is distributed 
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among four functions. This supports the statement made earlier that the behavior of an 

abstract data type is determined solely by the value returned by the behavior functions. 

The only code required in the generator functions is that required to implement the 

behavior functions. This distributing of code for the behaviors among the generators is 

the major way in which the implementation for abstract data types differs from the 

implementation for functions which manipulate, rather than define, data structures. 

There are systems for synthesizing implementations for abstract data types reported 

in the literature 20* 21 but these systems manipulate the specification directly. Examples 

are not used in the synthesis process. 

7. Conclusions 

This paper presents an application of learning from examples to the analysis and 

synthesis of abstract data types. The generalization process searches for a mapping from 

the input space into a transformation space in which a characteristic function can be gen- 

erated. This characteristic function defines a subset of the input space which can be 

equal to, more specific than or more general than the subset of the input space which 

belongs to the concept being learned. For abstract data types the concept to be learned is 

defined in relationship to the equivalence class of input objects which exhibit the same 

behavior. 

An algorithm for searching through a pre-defined set of transform functions is given 

and compared to related literature in machine learning. Results from an analysis of the 

queue data type are presented and demonstrate the possible application of this method to 

program synthesis. Some unique characteristics of synthesis for abstract data types are 

discussed. 



- 21 - 

References 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

Balzer, Robert, Cheatham, Thomas, and Green, Cordell, “Software Technology in 
the 1990’s: Using a New Paradigm,” Computer, pp. 39-45, Dec. 1983. 
Scherlis, William and Scott, Dana, “First Steps Towards Inferential Program- 
ming,” Information Processing 83, vol. 9, no. ISBN 0-444-86729-5, py. 199-212, 
Elsevier Science Publishers, NY, Sept. 1983. 
Guttag, J. and Homing, J., “The Algebraic Specification of Abstract Data Types,” 
Acta Inforrnatica, vol. 10, pp. 27-52, 1978. 
Wild, Christian, Eckhardt, Dave, Pang, Ava, and Sundararajan, Saraswathi, 
Analysis of Executable Specifications for Testing and Monitoring Abstract Data 
Types, Department of Computer Science, Old Dominion University, Norfolk, VA, 
March 1986. 
Bouge, L., Choquet, N., Fribourg, L., and Gaudel, M.C., “Application of PROLOG 
to Test Sets Generation From Algebraic Specifications,” Formal Methods and 
Software Development, vol. 2, no. ISBN 3-540-15 199-0, pp. 261-275, Springer- 
Verlag, Berlin, March 1985. 
Goguen, Joseph, “Some Design Principles and Theory for OBJ-0, A Language to 
Express and Execute Algebraic Specifications of Programs,” Mathematical Studies 
of Information Processing, vol. 75, no. ISBN 3-540-09541-1, pp. 425-473, Spring- 
Verlag, NY, 1978. 
Wild, Christian, “Learning the Behavior of Software Systems from Executable 
Specifications,” Proceedings of OAST Technical Symposium on Computer Science 
and Data Systems, no. ODU-TR-CS-86-011, November, 1986. 
Wild, Christian, ‘ ‘Automating Software Fault Tolerance,” Journal of Spacecraft 
and Rockets, vol. 24, no. 1, pp. 86-89, JanuaryFebruary 1987. 
Hoare, C. A .R., Communicating Sequential Processes, Pren tice Hall International, 
Englewood Cliffs, NJ, 1985. 
Michalski, Ryszard, ‘‘A Theory and Methodology of Inductive Learning,” in 
Machine Learning: An Artificial Intelligence Approach, ed. Ryszard Michalski, 
Jamie Carbonell and Tom Mitchell, vol. 1 ,  pp. 83-134, Morgan Kaufmann, Los 
Altos, CA, 1983. 
Kodratoff, Yves and Ganascia, Jean-Gabriel, “Improving the Generalization Step in 
Learning,’’ in Machine Learning, ed. Ryszard Michalski, Jaime Carbonell and Tom 
Mitchell, vol. 11, pp. 215-244, 1986. 
Dietterich, Thomas and Michalski, Ryszard, “A Comparative Review of Selected 
Methods for Learning from Examples,” in Machine Learning: An Artificial Intelli- 
gence Approach, vol. 1, pp. 41-82, Morgan Kaufmann, Los Altos, CA, 1983. 
Langley, Pat, Zytkow, Jan, Simon, Herbert, and Bradshaw, Gary, “The Search for 
Regularity: Four Aspects of Scientific Discovery,” in Machine Learning: An 
Artificial Intelligence Approach, ed. Ryszard Michalski, Jaime Carbonell and Tom 
Mitchell, vol. 2, pp. 425-469, Morgan Kaufmann Publishers, Inc., Los Altos, CA, 
1986. 



- 22 - 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

Cohen, Brian and Sammut, Claude, “Program Synthesis Through Concept Learn- 
ing,” in Automatic Program Construction Techniques, ed. Alan Biermann, Gerard 
Guiho and Yves Kadratoff, pp. 463-482, Macmillan Publishing, New York, 1984. 
Mitchell, Tom, Utgoff, Paul, and Banerji, Ranan, “Learning by Experimentation: 
Acquiring and Refining Problem-Solving Heuristics,” in Machine Learning: An 
Artificial Intelligence Approach, ed. Ryszard Michalski, Jaime Carbonell and Tom 
Mitchell, vol. 1, pp. 163-190, Morgan Kaufmann, Los Altos, CA, 1983. 
Sammut, Claude and Banerji, Ranan, “Learning Concepts by Asking Questions,” 
in Machine Learning: An Artificial Intelligence Approach, ed. Ryszard Michalski, 
Jaime Carbonell and Tom Mitchell, vol. 2, pp. 167-191, Morgan Kaufmann Publish- 
ers, Inc., Los Altos, CA, 1986. 
Lenat, D.B., Hayes-Roth, F., and Klahr, P., “Cognitive Economy in Artificial Intel- 
ligence Systems,’’ IJCAI, vol. 6 ,  pp. 531-539, 1979. 
Cohen, Paul and Fiegenbaum, Edward, ‘ ‘Data-driven Rule-space Operators,’’ in 
The Handbook of Artificial Intelligence, vol. 3, pp. 401-410, William Kaufmann, 
Inc., 1982. 
Smith, Douglas, “The Synthesis of LISP Programs from Examples: A Survey,” in 
Automatic Program Construction Techniques, ed. Alan Biermann, Gerard Guiho 
and Yves Kadratoff, pp. 307-324, Macmillan Publishing, New York, 1984. 
Bartels, U., Olthoff, W., and Raulefs, P., “APE: An expert system for automatic 
programming from abstract specification of data types and algorithms,” IJCAI-81, 

Moitra, Abha, “Direct Implementation of Algebraic Specification of Abstract Data 
Types,” IEEE Trans. on Soft. Eng.,  vol. SE-8, no. 1, pp. 12-20, Jan. 1982. 

pp. 1037-1043,1981. 



Report Documentation Page 
1. Report No. 

NASA CR-178369 
l(;A,Sl< IkaporL No.  H / - W  _ _  - - __ _ _  __ - . ~ 

2. Government Accession No. 

1 _ _  - -- __ __. 

7. Author(s1 

Christian Wild 

7. Key Words (Suggested by Author(s)) 

9. Performing Organization Name and Address 

Institute for Computer Applications in Science 

Mail Stop 132C, NASA Langley Research Center 
Hampton, VA 23665-5225 

2. Sponsoring Agency Name aqd Address 

National Aeronautics and Space Administration 
Langley Research Center 
Hampton, VA 23665-5225 

and Engineering 

5. Supplementary Notes 

Langley Technical Monitor: Submitted 

18. Distribution Statement 

3. Recipient’s Catalog No. 

Unclassified 

- _  .__-__- 

5 Report Date-- 

September 1987 

Unclassified 24 A02 

__..__ 
6. Performing Organization Code 

8. Performing Organization Report No. 

87-59 

10: Work Unit No. 

505-90-2 1-01 

11. Contract or Grant No. 

NAS1-18107 
13. Type of Report and Period Covered 

Contractor Report 
14. Sponsoring Agency Code 

to IEEE Trans. on 
Richard W. Barnwell Software Engrg. 

Final Report 

6. Abstract 

The discovery of general patterns of behavior from a set of input/output 
examples can be a useful technique in the automated analysis and synthesis of 
software systems. These generalized descriptions of the behavior form a set of 
assertions which can be used for validation, program synthesis, program testing 
and run-time monitoring. Describing the behavior is characterized as a learning 
process in which the set of inputs is mapped into an appropriate transform space 
such that general patterns can be easily characterized. The learning algorithm 
must choose a transform function and define a subset of the transform space 
which is related to equivalence classes of behavior in the original domain. An 
algorithm for analyzing the behavior of abstract data types is presented and 
several examples are given. The use of the analysis for purposes of program 
synthesis is also discussed. 

machine learning, program testing 61 - Computer Programming and 
66 - Systems Analysis 

Software 

I Unclassified - unlimited 
9. Security Classif. (of this report) 120. Security Classif. (of this page) 121. NO. of pages 1 22. Price 


